7,987 research outputs found

    Generalized Parton Distributions of ^3He

    Full text link
    A realistic microscopic calculation of the unpolarized quark Generalized Parton Distribution (GPD) Hq3H_q^3 of the 3He^3He nucleus is presented. In Impulse Approximation, Hq3H_q^3 is obtained as a convolution between the GPD of the internal nucleon and the non-diagonal spectral function, describing properly Fermi motion and binding effects. The proposed scheme is valid at low values of Δ2\Delta^2, the momentum transfer to the target, the most relevant kinematical region for the coherent channel of hard exclusive processes. The obtained formula has the correct forward limit, corresponding to the standard deep inelastic nuclear parton distributions, and first moment, giving the charge form factor of 3He^3He. Nuclear effects, evaluated by a modern realistic potential, are found to be larger than in the forward case. In particular, they increase with increasing the momentum transfer when the asymmetry of the process is kept fixed, and they increase with the asymmetry at fixed momentum transfer. Another relevant feature of the obtained results is that the nuclear GPD cannot be factorized into a Δ2\Delta^2-dependent and a Δ2\Delta^2-independent term, as suggested in prescriptions proposed for finite nuclei. The size of nuclear effects reaches 8 % even in the most important part of the kinematical range under scrutiny. The relevance of the obtained results to study the feasibility of experiments is addressed.Comment: 23 pages, 8 figures; Discussion in section II enlarged; discussion in section IV shortened. Final version accepted by Phys. Rev.

    Interplay of magnetic and structural transitions in Fe-based pnictide superconductors

    Full text link
    The interplay between the structural and magnetic phase transitions occurring in the Fe-based pnictide superconductors is studied within a Ginzburg-Landau approach. We show that the magnetoelastic coupling between the corresponding order parameters is behind the salient features observed in the phase diagram of these systems. This naturally explains the coincidence of transition temperatures observed in some cases as well as the character (first or second-order) of the transitions. We also show that magnetoelastic coupling is the key ingredient determining the collinearity of the magnetic ordering, and we propose an experimental criterion to distinguish between a pure elastic from a spin-nematic-driven structural transition.Comment: 5 pages, 3 figures. v2: Fig. 1 improved, references added

    Magnetotransport in the Kondo model with ferromagnetic exchange interaction

    Full text link
    We consider the transport properties in an applied magnetic field of the spin S=1/2 Kondo model with ferromagnetic exchange coupling to electronic reservoirs, a description relevant for the strong coupling limit of underscreened spin S=1 Kondo impurities. Because the ferromagnetic Kondo interaction is marginally irrelevant, perturbative methods should prove accurate down to low energies. For the purpose of this study, we use a combination of Majorana diagrammatic theory with Density Matrix Numerical Renormalization Group simulations. In the standard case of antiferromagnetic Kondo exchange, we first show that our technique recovers previously obtained results for the T-matrix and spin relaxation at weak coupling (above the Kondo temperature). Considering then the ferromagnetic case, we demonstrate how the low-energy Kondo anomaly splits for arbitrary small values of the Zeeman energy, in contrast to fully screened Kondo impurities near the strong coupling Fermi liquid fixed point, and in agreement with recent experimental findings for spin S=1 molecular quantum dots.Comment: 14 pages, 13 figures, minor changes in V

    A spectroscopic look at the gravitationally lensed type Ia SN 2016geu at z=0.409

    Full text link
    The spectacular success of type Ia supernovae (SNe Ia) in SN-cosmology is based on the assumption that their photometric and spectroscopic properties are invariant with redshift. However, this fundamental assumption needs to be tested with observations of high-z SNe Ia. To date, the majority of SNe Ia observed at moderate to large redshifts (0.4 < z < 1.0) are faint, and the resultant analyses are based on observations with modest signal-to-noise ratios that impart a degree of ambiguity in their determined properties. In rare cases however, the Universe offers a helping hand: to date a few SNe Ia have been observed that have had their luminosities magnified by intervening galaxies and galaxy clusters acting as gravitational lenses. In this paper we present long-slit spectroscopy of the lensed SNe Ia 2016geu, which occurred at a redshift of z=0.409, and was magnified by a factor of ~55 by a galaxy located at z=0.216. We compared our spectra, which were obtained a couple weeks to a couple months past peak light, with the spectroscopic properties of well-observed, nearby SNe Ia, finding that SN 2016geu's properties are commensurate with those of SNe Ia in the local universe. Based primarily on the velocity and strength of the Si II 6355 absorption feature, we find that SN 2016geu can be classified as a high-velocity, high-velocity gradient and "core-normal" SN Ia. The strength of various features (measured though their pseudo-equivalent widths) argue against SN 2016geu being a faint, broad-lined, cool or shallow-silicon SN Ia. We conclude that the spectroscopic properties of SN 2016geu imply that it is a normal SN Ia, and when taking previous results by other authors into consideration, there is very little, if any, evolution in the observational properties of SNe Ia up to z~0.4. [Abridged]Comment: 12 pages, 5 figures, 4 tables. Submitted to MNRAS. Comments welcome

    Thin and thick cloud top height retrieval algorithm with the Infrared Camera and LIDAR of the JEM-EUSO Space Mission

    Full text link
    The origin of cosmic rays have remained a mistery for more than a century. JEM-EUSO is a pioneer space-based telescope that will be located at the International Space Station (ISS) and its aim is to detect Ultra High Energy Cosmic Rays (UHECR) and Extremely High Energy Cosmic Rays (EHECR) by observing the atmosphere. Unlike ground-based telescopes, JEM-EUSO will observe from upwards, and therefore, for a properly UHECR reconstruction under cloudy conditions, a key element of JEM-EUSO is an Atmospheric Monitoring System (AMS). This AMS consists of a space qualified bi-spectral Infrared Camera, that will provide the cloud coverage and cloud top height in the JEM-EUSO Field of View (FoV) and a LIDAR, that will measure the atmospheric optical depth in the direction it has been shot. In this paper we will explain the effects of clouds for the determination of the UHECR arrival direction. Moreover, since the cloud top height retrieval is crucial to analyze the UHECR and EHECR events under cloudy conditions, the retrieval algorithm that fulfills the technical requierements of the Infrared Camera of JEM-EUSO to reconstruct the cloud top height is presently reported.Comment: 5 pages, 6 figures, Atmohead Conference 201

    Stability analysis of sonic horizons in Bose-Einstein condensates

    Get PDF
    We examine the linear stability of various configurations in Bose-Einstein condensates with sonic horizons. These configurations are chosen in analogy with gravitational systems with a black hole horizon, a white hole horizon and a combination of both. We discuss the role of different boundary conditions in this stability analysis, paying special attention to their meaning in gravitational terms. We highlight that the stability of a given configuration, not only depends on its specific geometry, but especially on these boundary conditions. Under boundary conditions directly extrapolated from those in standard General Relativity, black hole configurations, white hole configurations and the combination of both into a black hole--white hole configuration are shown to be stable. However, we show that under other (less stringent) boundary conditions, configurations with a single black hole horizon remain stable, whereas white hole and black hole--white hole configurations develop instabilities associated to the presence of the sonic horizons.Comment: 14 pages, 7 figures (reduced resolution
    • …
    corecore